Adult scoliosis

Dealing with spinal imbalance

Scoliosis is the development of asymmetrical curvature and twisting of the spine. It’s commonly thought of as a disease that occurs in adolescents, and is sometimes associated with wearing a back brace to keep the curve from worsening.

In fact, scoliosis is more common in older adults than in adolescents. Some adults who had scoliosis as adolescents may see gradual worsening of their scoliosis with age, but the majority of older adults with scoliosis didn’t have it earlier in life.

Scoliosis in older adults is a distinctly different problem from that in adolescents. In adults, back braces are used sparingly, if at all. Adults often benefit most from regular exercise. If surgery is needed, breakthroughs have made certain scoliosis procedures far easier on the body and far more effective than in the recent past.

What’s happening?

Scoliosis in older adults is usually caused by the wear and tear (degeneration) of the spine that commonly occurs with age.
occurs with age. This may include back problems such as:

- **Degenerating disks** — Disks are the pads between your vertebrae that act as cushions and allow for spine flexibility. Disk degeneration is a natural part of aging, and diminished disks can place more pressure on joints of the spine. When a disk degenerates unevenly, eventually scoliosis can result.

- **Osteoporosis** — This weakening and thinning of bone can cause the vertebrae to fracture and compress. Asymmetric compression can contribute to scoliosis.

- **Prior back surgery that removed spine tissues** — Procedures such as laminectomy or facetectomy that remove parts of the spine that are pressing on nerves can lead to spine imbalance.

- **Arthritis** — Specifically, this is the development of wear-and-tear arthritis (osteoarthritis) in the joints of your spine (facet joints). Spine imbalance — whether caused by pre-existing curvature from youth, disk degeneration or osteoporosis-related degeneration — places uneven force on facet joints. This can cause or worsen arthritis in those joints, leading to further imbalance of the spine.

Pain progression

Scoliosis in older adults isn’t necessarily considered a problem until symptoms develop. Most older adults with considerable spinal curves — especially those who are fit and healthy — can be quite active with no symptoms at all.

Problems with scoliosis are often preceded by lack of fitness — specifically the loss of strength in the core muscles of the trunk — and being overweight or obese. These factors — in addition to spine degeneration and unbalanced spinal mechanics — may at first cause low back pain. Over time, osteoarthritis of spine joints may develop or worsen. The body responds by producing bony outgrowths that can pinch or compress root nerves that branch from the main spinal column. This can lead to pain or numbness that radiates down one leg and may cause leg weakness. The pain may come and go.

The body also responds by thickening spine ligaments. These can gradually squeeze or compress your spinal column (spinal stenosis). It may take years, but this may cause pain that’s centered in the buttocks, rather than radiating down the leg. Position changes such as sitting and leaning forward can often provide relief. But as ligament thickening progresses, position changes provide less relief and leg weakness may make it difficult to walk.

Stooped posture is another concern with scoliosis. To relieve pain, you may tip your trunk forward while standing or walking. This can strain and fatigue back muscles, or even cause painful muscle spasms. Additional concerns may include having a rib that pinches against the pelvis or compression of abdominal organs, particularly in those who are overweight. Advanced scoliosis may even make it difficult to keep yourself upright.

Get active

Usually, treatment of pain from degenerative scoliosis is similar to treatment for other types of chronic back pain. Strategies include:

- **Exercising** — Exercise, such as yoga or Pilates, that strengthens core muscles of the trunk is one of the biggest determinants of long-term health. Avoid extremes of rotation and bending, and use good posture. Balance training and overall fitness can help prevent falls.

- **Load-bearing exercise** such as walking can help combat bone degeneration. Aquatic exercise may be a good alternative if walking is too difficult or painful.

Addressing bone health — Work with your doctor to develop a plan to stop or slow bone thinning that can lead to osteoporosis and increase risk of spine fractures. This includes getting adequate calcium and vitamin D and possibly taking osteoporosis medications.

- **Maintaining a healthy weight** — The more weight you carry, the more stress it puts on your back.

- **Stopping smoking** — Smoking reduces blood flow to disks and accelerates disk degeneration.

- **Using pain therapies** — Acetaminophen (Tylenol, others), ibuprofen (Advil, Motrin, others) or naproxen (Aleve, others) can help relieve pain. Certain antidepresants and anti-seizure drugs also may be considered. Your doctor may prescribe narcotic-containing drugs for severe, persistent pain.
Health tips

Gout and diet choices

Gout is a painful and potentially disabling form of arthritis characterized by excess levels of uric acid. Dietary and lifestyle factors may play a part in reducing uric acid.

- Choosing the right type and amount of proteins — Increased gout risk has been associated with eating large portions of red meat, seafood and fish. Eating poultry isn't associated with gout risk.

- Avoiding alcohol — Evidence suggests beer and hard liquors can raise uric acid levels. But there doesn't appear to be an association between gout and drinking wine in moderation.

- Limiting sugar — Put the brakes on beverages that contain lots of fructose. Fructose is a carbohydrate, and it’s the only one known to increase uric acid levels. Plant proteins, especially nuts and legumes, also are good protein choices that don’t increase risk of gout.

- Keeping hydrated — Aim for eight to 16 cups of fluid — mainly water — each day. Fluids help remove uric acid from the body. Coffee may decrease risk of gout.
Cancer vaccines

The quest heats up

Scientists worldwide are working to develop vaccines to help the immune system isolate and destroy cancer cells while sparing healthy cells.

The key is understanding how cancer cells disguise themselves from the body’s disease-fighting immune system and tricking them into making their presence known.

Immune system primer

Your immune system protects your body from foreign invaders — primarily infectious germs (microbes) that cause disease. The immune system also helps protect against abnormal, damaged or diseased cells, including cancer cells.

Normally, your white blood cells lead the charge. Specialized white blood cells — called lymphocytes — act like arrows directed at certain microbe invaders or abnormal cells.

Most standard vaccines help the body recognize foreign substances (antigens). Antigens stimulate a specific immune response. For instance, the vaccine created to prevent measles contains a weakened live measles virus. That virus acts like an antigen, prompting your immune system to fight the virus and create a long-lasting immunity.

Your immune system knows not to attack your normal cells because normal cells have their own set of self-antigens that set them apart as nonthreatening. Cancer cells are different — they can carry both self-antigens and cancer-associated self-antigens, which flag the cancer cells as being foreign.

Cancer vaccines are either preventive or treatment oriented. Pre-
ventive cancer vaccines are designed to protect against infections that are linked to the risk of developing certain cancers. Cancer preventive vaccines include:

- **Cervical cancer vaccines** — Most cases of cervical cancer are caused by various strains of sexually transmitted human papillomavirus (HPV). The two vaccines approved by the Food and Drug Administration (FDA) are Gardasil and Cervarix. Both vaccines are given before age 26 and can prevent precancerous lesions if given prior to exposure to the virus. Both can prevent most vaginal and vulvar cancer in women, and Gardasil can prevent genital warts.

- **Hepatitis B virus (HBV) vaccine** — Chronic HBV infection can lead to a type of liver cancer called hepatocellular carcinoma. The FDA approved the vaccine in 1981, making the HBV vaccine (Recombivax HB, Engerix-B) the first cancer preventive vaccine. It’s given to most U.S. children shortly after birth and again after age 1.

Both preventive vaccines use antigens from part of the virus known to prompt or contribute to cancer development.

A different approach

Cancer-treatment vaccines work a different way. In simplest terms, they’re structured to harness the power of the immune system.

The first cancer-treatment vaccine was in 2010. The vaccine — sipuleucel-T lactated Ringers solution (Provenge) — is individually customized for men with a certain type of advanced prostate cancer.

The vaccine uses specific immune system cells from a man’s blood to help increase his body's immune response to an antigen found on most prostate cancer cells. In trials, the vaccine increased survival by about four months. Another prostate cancer vaccine still under study uses a particular virus to stimulate the body’s immune response to prostate cancer cells. It’s also being studied for use by men with advanced prostate cancer.

Cutting edge

Decades of research have gone into understanding what fuels cancer cells and keeps them alive. The National Cancer Institute (NCI) has recognized the importance of several tumor proteins for vaccine development. Among them is MUC1, a protein found in abundance on the surface of tumor cells, such as those in breast, ovarian, pancreatic and colorectal cancers.

MUC1 is produced at high levels when cancer occurs and changes normal cell structure. Viewed under a microscope, tumor-associated MUC1 proteins appear to be decorated with distinctive, shorter sets of sugars, distinguishing them from healthy cells.

In 2011, researchers at Mayo Clinic and at the University of Georgia published early findings from laboratory studies of a cancer vaccine that’s built around helping the immune system recognize and kill cancer cells that exhibit changes in their surface MUC1 proteins. It’s too soon to know if the vaccine will make it into clinical trials. But early efforts indicate the vaccine produces a strong immune response.

Along with others, Mayo Clinic researchers are pursuing a possible vaccine treatment for melanoma, an often deadly skin cancer. Several prior melanoma vaccine trials have helped advance and refine the quest. In 2012, Mayo Clinic researchers expect to be involved in the start of two new melanoma vaccine clinical trials.

Mayo Clinic also has FDA approval for clinical trials of ovarian and breast cancer vaccines designed to prevent cancer relapse.

The vaccines target proteins. One is folate receptor alpha protein, found in abundance in breast and ovarian cancer cells. The other protein is HER-2-neu, found on some of the most aggressive breast cancers. It’s hoped the vaccines will boost the immune system in women who’ve completed conventional treatment for ovarian or breast cancer and have no sign of disease. Early studies found both vaccines worked best when there was less disease.

Reason for hope

The efforts of cancer vaccine researchers worldwide is fueling optimism that eventually the immune system may be prompted to identify and destroy cancer.

According to the NCI, active clinical trials of cancer treatment and cancer preventive vaccines are underway for more than a dozen types of cancer. Clinical trials for vaccines under study are conducted in many settings. Some of these include cancer centers, large medical centers, small hospitals and doctors’ offices.

If you’re interested in learning more about possible cancer vaccine clinical trial options, talk with your doctor. In addition, the National Cancer Institute keeps a list of all cancer clinical trials. To reach the NCI, call 800-422-6237. National Cancer Institute information is also available on the Internet at www.cancer.gov.
C. difficile

A super serious bug

Antibiotic drugs have cured illness and saved countless lives by destroying infection-causing bacteria. But bacteria can be adaptive organisms. *Clostridium difficile* (klos-TRID-e-uhm dif-uh-SEEL) — also called *C. difficile* or *C. diff* — is one example. *C. difficile* is a bacterium that may cause no symptoms, or it can cause problems ranging from diarrhea to life-threatening inflammation of the colon.

In recent years, *C. difficile* infections have become more frequent, severe and difficult to treat. Older adults are at particularly high risk of developing a *C. difficile* infection, especially if they’re in a hospital or long term care facility. In an ironic twist, taking antibiotics can trigger a *C. difficile* infection.

High-risk situations

C. difficile bacteria can be found throughout the environment, but are most common in hospitals and other health care facilities where people are especially vulnerable to infection. These bacteria are passed in feces and produce hardy spores that without effective cleaning can persist on surfaces for months.

C. difficile spreads through contact from an environmental source or a health care worker’s hands to a patient and then into the mouth and gastrointestinal tract. Touching contaminated objects such as cart handles, bedrails, bedside tables, toilets, telephones, remote controls, sinks and thermometers may allow spread of the organism.

Simply coming in contact with the microorganism usually isn’t enough to make you ill. Your body’s defenses usually protect you.

However, antibiotics may disrupt the protective bacteria in your gut, allowing *C. difficile* to cause illness. That’s because your intestines contain millions of beneficial bacteria, many of which help keep harmful bacteria like *C. difficile* in check. When you take an antibiotic to treat an infection, the drug can destroy some of the helpful bacteria and *C. difficile* can grow out of control. The risk of infection goes up if you take broad-spectrum antibiotics that target a range of bacteria, use multiple antibiotics or take antibiotics for a prolonged period.

Additional risk factors include:

- Having had abdominal surgery or a gastrointestinal procedure
- Having had a previous *C. difficile* infection
- Taking stomach acid-suppressing medications for problems such as gastroesophageal reflux disease

Serious symptoms

C. difficile infection may be suspected in anyone with diarrhea who is taking or has taken antibiotics within the past three months, or in those who develop diarrhea within a few days of hospitalization. The most common symptoms of mild to moderate infection are:

- Watery diarrhea three or more times a day for two or more days
- Mild abdominal cramping and tenderness
- Many people have loose stools during or shortly after antibiotic therapy. Still, contact your doctor if these milder symptoms last more than three days.

Seek emergency care if you have symptoms of severe *C. difficile* infection such as a new fever, severe pain or cramping, blood in your stool, or very frequent watery bowel movements a day. Many times, people describe their stool as green in color and odoruous.

C. difficile can cause significant inflammation and potentially deadly complications such as severe dehydration, shock or potential rupture of the colon.

Isolation and treatment

For mild illness, the first step may be to stop taking the antibiotic that triggered the infection. This may relieve symptoms. However, many people require additional treatment to eliminate the infection. This includes antibiotics directed at the bug. Treatments may include:

- Specific antibiotics — Metronidazole (Flagyl), oral vancomycin (Vancocin) or fidaxomicin (Dificid) keep *C. difficile* from growing.
- Intravenous fluids, nutrition — These help avoid dehydration.
- Surgery — Very rarely in life-threatening cases, removal of the colon may be lifesaving.

About a fourth of people with *C. difficile* develop recurrent symptoms shortly after completing treatment. Treatment for recurrent disease usually includes:

- A repeat course of a first line antibiotic or a prolonged course of vancomycin
- Avoidance of the antibiotics that caused the problem

A novel approach is to restore healthy intestinal bacteria by placing healthy donor stool in the colon. The treatment works more than 90 percent of the time when everything else has failed, but few physicians provide the procedure.

Stopping the bug

If you or a loved one has an episode of diarrhea or you’re visiting a health care facility, vigorously wash your hands with soap and warm water for 30 seconds. The friction of rubbing removes the spores. Alcohol-based hand sanitizers don’t effectively destroy spores of *C. difficile*. At home, clean the bathroom and other high-touch surfaces daily with a 1-to-10 dilution of household bleach.
Inside whole grains

The gritty details

Have you ever wondered what distinguishes wheat bread, whole-wheat bread and 100 percent whole-grain bread from one another? The answer is how much processing — refining — the original grain has undergone since harvest.

Americans are good at eating grain-based foods. The problem is that the majority of those foods are highly processed refined grains, not whole grains. Dietary Guidelines for Americans recommends at least half of your daily grain servings be whole. Making the right choices ensures you get adequate whole-grain nutrients and fiber.

True grit

Whole grains include the entire grain, usually called the kernel. The nutrient-dense kernel includes a fibrous outer coating (bran) that protects the kernel’s interior. Most of the interior is endosperm, a starchy substance that provides energy for the kernel’s reproductive seed (germ). The germ is a treasure trove of vitamins, minerals, healthy unsaturated oils and phytochemicals.

Whole grains are products made from kernels that are cracked, crushed or flaked, as long as the proportions of bran, endosperm and germ are relatively the same as when the grain was intact. That relative sameness can be recreated by adding back the same amounts of bran, germ and endosperm removed during processing.

Although compounds are altered when whole-grain kernels are cracked, crushed or flaked, those changes may not be as significant as when grains are refined. Refined grains have a finer texture. The bran and germ are removed leaving the endosperm, which is pulverized.

Refining strips away fiber and vitamins. Most refined products are enriched with added iron and B vitamins — thiamin, riboflavin, niacin and folic acid. Often, the term “enriched” appears on the package.

Whole grains are associated with protection from cardiovascular disease. They may also help lower weight and reduce incidence of diabetes, although evidence is limited.

Check the label

Ingredients are listed on labels according to weight.

For products such as breads or cereals, if whole grains are first or second after water, and are the primary ingredient, that product is considered predominantly whole grain. For foods with multiple whole grains, look for those to be listed at the top of the ingredient list.

Among the whole grains you may see listed are whole-grain corn or barley, buckwheat (kasha), millet, oats, oatmeal, popcorn, quinoa, brown or wild rice, and whole rye. Whole wheat may be listed several ways, including wheat berries, cracked wheat and bulgur.

You can also check the Percent Daily Value of dietary fiber listed on the Nutrition Facts label — the higher the percentage, the better. Look for foods that have between 2.5 and 5 grams, which constitutes 10 to 19 percent of the Daily Value. Foods high in dietary fiber contain 5 or more grams.

Commit to more grit

Dietary guidelines generally recommend that most older women get five to six 1-ounce grain servings a day, and most older men get seven to 10 1-ounce servings.

Examples of a 1-ounce serving are a slice of bread, a cup of ready-to-eat cereal, or one-half cup of cooked cereal, rice or pasta.

Some simple ways to eat more whole grains include:

■ Choosing whole-grain cereals — Try steel-cut oats, a home-made porridge of cracked wheat berries or mixtures of whole grains such as oats and brown rice. These are typically cooked with milk or water.

■ Choosing whole-grain breads — Have a hearty toast with your yogurt and fruit. Enrich your sandwich with whole-grain bread.

■ Trying new dishes — Cook brown rice, wild rice, quinoa or barley. Or try groats. These are minimally processed whole-grain kernels of oats or barley with the outer husk or hull removed. Groats are usually soaked and then slowly simmered until soft.

■ Substituting whole grain — Instead of regular pasta, use whole-grain pasta. Substitute brown rice for white rice or potatoes in soups and other dishes.

Check the label

Ingredients are listed on labels according to weight.

For products such as breads or cereals, if whole grains are first or second after water, and are the primary ingredient, that product is considered predominantly whole grain. For foods with multiple whole grains, look for those to be listed at the top of the ingredient list.

Among the whole grains you may see listed are whole-grain corn or barley, buckwheat (kasha), millet, oats, oatmeal, popcorn, quinoa, brown or wild rice, and whole rye. Whole wheat may be listed several ways, including wheat berries, cracked wheat and bulgur.

You can also check the Percent Daily Value of dietary fiber listed on the Nutrition Facts label — the higher the percentage, the better. Look for foods that have between 2.5 and 5 grams, which constitutes 10 to 19 percent of the Daily Value. Foods high in dietary fiber contain 5 or more grams.

Commit to more grit

Dietary guidelines generally recommend that most older women get five to six 1-ounce grain servings a day, and most older men get seven to 10 1-ounce servings.

Examples of a 1-ounce serving are a slice of bread, a cup of ready-to-eat cereal, or one-half cup of cooked cereal, rice or pasta.

Some simple ways to eat more whole grains include:

■ Choosing whole-grain cereals — Try steel-cut oats, a home-made porridge of cracked wheat berries or mixtures of whole grains such as oats and brown rice. These are typically cooked with milk or water.

■ Choosing whole-grain breads — Have a hearty toast with your yogurt and fruit. Enrich your sandwich with whole-grain bread.

■ Trying new dishes — Cook brown rice, wild rice, quinoa or barley. Or try groats. These are minimally processed whole-grain kernels of oats or barley with the outer husk or hull removed. Groats are usually soaked and then slowly simmered until soft.

■ Substituting whole grain — Instead of regular pasta, use whole-grain pasta. Substitute brown rice for white rice or potatoes in soups and other dishes.

Check the label

Ingredients are listed on labels according to weight.

For products such as breads or cereals, if whole grains are first or second after water, and are the primary ingredient, that product is considered predominantly whole grain. For foods with multiple whole grains, look for those to be listed at the top of the ingredient list.

Among the whole grains you may see listed are whole-grain corn or barley, buckwheat (kasha), millet, oats, oatmeal, popcorn, quinoa, brown or wild rice, and whole rye. Whole wheat may be listed several ways, including wheat berries, cracked wheat and bulgur.

You can also check the Percent Daily Value of dietary fiber listed on the Nutrition Facts label — the higher the percentage, the better. Look for foods that have between 2.5 and 5 grams, which constitutes 10 to 19 percent of the Daily Value. Foods high in dietary fiber contain 5 or more grams.

Commit to more grit

Dietary guidelines generally recommend that most older women get five to six 1-ounce grain servings a day, and most older men get seven to 10 1-ounce servings.

Examples of a 1-ounce serving are a slice of bread, a cup of ready-to-eat cereal, or one-half cup of cooked cereal, rice or pasta.

Some simple ways to eat more whole grains include:

■ Choosing whole-grain cereals — Try steel-cut oats, a home-made porridge of cracked wheat berries or mixtures of whole grains such as oats and brown rice. These are typically cooked with milk or water.

■ Choosing whole-grain breads — Have a hearty toast with your yogurt and fruit. Enrich your sandwich with whole-grain bread.

■ Trying new dishes — Cook brown rice, wild rice, quinoa or barley. Or try groats. These are minimally processed whole-grain kernels of oats or barley with the outer husk or hull removed. Groats are usually soaked and then slowly simmered until soft.

■ Substituting whole grain — Instead of regular pasta, use whole-grain pasta. Substitute brown rice for white rice or potatoes in soups and other dishes.

Check the label

Ingredients are listed on labels according to weight.

For products such as breads or cereals, if whole grains are first or second after water, and are the primary ingredient, that product is considered predominantly whole grain. For foods with multiple whole grains, look for those to be listed at the top of the ingredient list.

Among the whole grains you may see listed are whole-grain corn or barley, buckwheat (kasha), millet, oats, oatmeal, popcorn, quinoa, brown or wild rice, and whole rye. Whole wheat may be listed several ways, including wheat berries, cracked wheat and bulgur.

You can also check the Percent Daily Value of dietary fiber listed on the Nutrition Facts label — the higher the percentage, the better. Look for foods that have between 2.5 and 5 grams, which constitutes 10 to 19 percent of the Daily Value. Foods high in dietary fiber contain 5 or more grams.

Commit to more grit

Dietary guidelines generally recommend that most older women get five to six 1-ounce grain servings a day, and most older men get seven to 10 1-ounce servings.

Examples of a 1-ounce serving are a slice of bread, a cup of ready-to-eat cereal, or one-half cup of cooked cereal, rice or pasta.

Some simple ways to eat more whole grains include:

■ Choosing whole-grain cereals — Try steel-cut oats, a home-made porridge of cracked wheat berries or mixtures of whole grains such as oats and brown rice. These are typically cooked with milk or water.

■ Choosing whole-grain breads — Have a hearty toast with your yogurt and fruit. Enrich your sandwich with whole-grain bread.

■ Trying new dishes — Cook brown rice, wild rice, quinoa or barley. Or try groats. These are minimally processed whole-grain kernels of oats or barley with the outer husk or hull removed. Groats are usually soaked and then slowly simmered until soft.

■ Substituting whole grain — Instead of regular pasta, use whole-grain pasta. Substitute brown rice for white rice or potatoes in soups and other dishes. ■
Second opinion

Q: I have more eye floaters than in the past. Should I be worried?

A: Eye floaters are the gray or transparent specks, strings or webs that you may see drift about when you move your eyes. A noticeable increase in eye floaters over time probably warrants a visit with an eye doctor, as an increase in floaters can be a sign of an underlying eye problem.

More importantly, if you experience a sudden increase in the number of floaters — especially if accompanied by flashes of light or a loss of peripheral vision — seek immediate eye evaluation. These painless symptoms could be caused by a retinal tear or retinal detachment. Without prompt treatment, a retinal tear or detachment can lead to permanent vision impairment or even blindness in the affected eye.

A sudden increase in floaters can also be caused by a hemorrhage or an inflammation in the eye. Any sudden increase in floaters is deserving of an evaluation by an eye specialist.

Still, eye floaters are usually harmless and most people have a few floaters drifting around inside their eyes. Eye floaters are often caused by age-related changes that occur as the jelly-like substance (vitreous humor) inside your eyeballs becomes more liquid. In rare instances, eye floaters can become so numerous that they significantly interfere with your vision.

If that happens, your doctor may suggest a surgical procedure (vitreotomy) that uses a hollow needle to withdraw vitreous humor from your eye. The vitreous humor is replaced with a saltwater solution. However, this procedure can cause retinal detachment and cataracts, and it may not remove all floaters. Laser procedures carry the same serious risks and are rarely recommended.

Q: When my husband drops a piece of food on the floor, he quickly picks it up and eats it, claiming that if it’s not on the floor for more than five seconds, it’s just fine. I think he’s asking for trouble. What do you think?

A: He may be asking for trouble. One study tested how long it took for salmonella bacteria to transfer from tile, wood or carpet to a slice of bologna that was dropped on the surface. The bologna in the different tests was picked up after five, 30 and 60 seconds.

It turns out that the transfer of virtually all of the bacteria that would end up on the bologna occurred almost immediately. Leaving the bologna on the floor for five seconds resulted in virtually the same amount of salmonella bacteria contamination as it did when the bologna was left for a minute.

The Centers for Disease Control and Prevention estimates that each year, one in six Americans gets sick from foodborne illness — and about 3,000 Americans die of foodborne diseases. Eating dropped food isn’t a common means of acquiring food poisoning, but the risk of contamination does exist. You have no way of knowing what types of bacteria are on your floor, and research has found that bacteria can persist for hours, days or weeks — although the amount does decline over time.

Food that’s been dropped on the floor is almost immediately contaminated with any organisms it comes in contact with, so it potentially could cause illness if eaten.